Global Dynamical Solvers for Nonlinear Programming Problems
نویسندگان
چکیده
We construct a family of globally defined dynamical systems for a nonlinear programming problem, such that: (a) the equilibrium points are the unknown (and sought) critical points of the problem, (b) for every initial condition, the solution of the corresponding initial value problem converges to the set of critical points, (c) every strict local minimum is locally asymptotically stable, (d) the feasible set is a positively invariant set, and (e) the dynamical system is given explicitly and does not involve the unknown critical points of the problem. No convexity assumption is employed. The construction of the family of dynamical systems is based on an extension of the Control Lyapunov Function methodology, which employs extensions of LaSalle’s theorem and are of independent interest. Examples illustrate the obtained results.
منابع مشابه
Sufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملUtilities Init Routine Parameter Setup Optimization Driver NLPLIB Solver OPTIM
The paper presents a Graphical User Interface (GUI) for nonlinear programming in Matlab. The GUI gives easy access to all features in the NLPLIB TB (NonLinear Programming LIBrary Toolbox); a set of Matlab solvers, test problems, graphical and computational utilities for unconstrained and constrained optimization, quadratic programming, unconstrained and constrained nonlinear least squares, box-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 55 شماره
صفحات -
تاریخ انتشار 2017